Image Source: San Diego County Office of Education
Refer to the Essential Learning Event 4 Evidence-Based Practice for information related to the practice of Engaging in Argument from Evidence:
At these links you will find:
from NGSS Appendix F: Science and Engineering Practices in the NGSS
The study of science and engineering should produce a sense of the process of argument necessary for advancing and defending a new idea or an explanation of a phenomenon and the norms for conducting such arguments. In that spirit, students should argue for the explanations they construct, defend their interpretations of the associated data, and advocate for the designs they propose. (NRC Framework, 2012, p. 73) Argumentation is a process for reaching agreements about explanations and design solutions. In science, reasoning and argument based on evidence are essential in identifying the best explanation for a natural phenomenon. In engineering, reasoning and argument are needed to identify the best solution to a design problem. Student engagement in scientific argumentation is critical if students are to understand the culture in which scientists live, and how to apply science and engineering for the benefit of society. As such, argument is a process based on evidence and reasoning that leads to explanations acceptable by the scientific community and design solutions acceptable by the engineering community. Argument in science goes beyond reaching agreements in explanations and design solutions. Whether investigating a phenomenon, testing a design, or constructing a model to provide a mechanism for an explanation, students are expected to use argumentation to listen to, compare, and evaluate competing ideas and methods based on their merits. Scientists and engineers engage in argumentation when investigating a phenomenon, testing a design solution, resolving questions about measurements, building data models, and using evidence to evaluate claims.
from A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas (page 52)
In science, reasoning and argument are essential for identifying the strengths and weaknesses of a line of reasoning and for finding the best explanation for a natural phenomenon. Scientists must defend their explanations, formulate evidence based on a solid foundation of data, examine their own understanding in light of the evidence and comments offered by others, and collaborate with peers in searching for the best explanation for the phenomenon being investigated.
In engineering, reasoning and argument are essential for finding the best possible solution to a problem. Engineers collaborate with their peers throughout the design process, with a critical stage being the selection of the most promising solution among a field of competing ideas. Engineers use systematic methods to compare alternatives, formulate evidence based on test data, make arguments from evidence to defend their conclusions, evaluate critically the ideas of others, and revise their designs in order to achieve the best solution to the problem at hand.
Argumentation is the process by which evidence-based conclusions and solutions are reached. In science and engineering, reasoning and argument based on evidence are essential to identifying the best explanation for a natural phenomenon or the best solution to a design problem. Scientists and engineers use argumentation to listen to, compare, and evaluate competing ideas and methods based on merits. Scientists and engineers engage in argumentation when investigating a phenomenon, testing a design solution, resolving questions about measurements, building data models, and using evidence to evaluate claims.
from A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas (pages 72-73)
By grade 12, students should be able to
A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas (pages 71-74)
Science Practices Continuum - Students' Performance This tool is a continuum for each practice that shows how students' performance can progress over time. A teacher can use the continuum to assess students' abilities to engage in the practices and to inform future instruction. From Instructional Leadership for Science Practices.
Science Practices Continuum - Supervision This tool is a continuum for each practice that shows how instruction can progress over time. An instructional supervisor can use the continuum to identify the current level for a practice in a science lesson. Then the supervisor can provide feedback, such as offering instructional strategies to help move future instruction farther along the continuum. From Instructional Leadership for Science Practices.
Potential Instructional Strategies for Engaging in Argument from Evidence This instructional strategies document provide examples of strategies that teachers can use to support the science practice. Supervisors might share these strategies with teachers as they work on improving instruction of the science practices. Teachers might find these helpful for lesson planning and implementing science practices in their classrooms. From Instructional Leadership for Science Practices.
Argumentation in Science Education Published by NSTA in The Science Teacher magazine publication in 2013, this article discusses what argumentation looks like in the science classroom, its importance, and provides a framework when considering the components of an argument and the criteria by which it might be assessed.
Bozemanscience Video